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I. INTRODUCTION

In this paper, we consider the two-user interference channel, which
models communication scenarios in which multiple one-to-one trans-
missions over a common frequency band are taking place creating
interference one each other. The capacity region of the general Gaussian
interference channel is a long standing problem and is only known
for special cases, such as Gaussian channels with weak (“noisy”) or
strong interference [2]–[4]. Furthermore, information-theoretic results
advocate for different ways of handling the interference, including
orthogonal access, treating interference as noise (IAN), successive
interference cancellation (SIC), joint decoding and interference align-
ment [5]. Here, we investigate the stability region of the two-user
interference channel, which, to the best of our knowledge, has not been
reported to the literature. In [6], the effect of multipacket reception on
stability and delay of slotted ALOHA-based random access systems is
considered. In [7], the authors studied a cognitive interference channel,
as well as the case of a primary user and a cognitive user with and
without relaying capabilities. The maximum stable throughput of the
cognitive user for a fixed throughput selected by the primary user is
derived.

In this work, we investigate the two-user interference channel, where
each user has bursty arrivals and transmits a packet whenever its queue
is not empty, and we obtain the exact stability region for the general
case. The characterization of the stability region is a challenging
problem due to the fact that the user queues are coupled, i.e. the
service process of a queue depends on the status of the other queues.
To overcome this difficulty, the stochastic dominance technique is
used here [8]. We also consider the cases where each receiver treats
interference as noise or employ successive interference cancelation.
Finally, we present conditions for the shape of the stability region
(concave or convex).

II. SYSTEM MODEL

We consider a two-user interference channel, as depicted in Fig. 1,
in which each source Si, i = 1, 2 intends to communicate with its
respective destination Di, i = 1, 2. The packet arrival processes at S1

and S2 are assumed to be independent and stationary with mean rates
λ1 and λ2, respectively. Transmitter Si has an infinite capacity queue
to store incoming packets and Qi denotes the size in number packets
of the i-th queue. The transmission rates of S1 and S2 are fixed at R1

and R2, respectively.
Time is assumed to be slotted and each source transmits a packet in

a timeslot if its queue is not empty; otherwise it remains silent. The
transmission of one packet requires one timeslot and we assume that
ACKs are instantaneous and error-free. A block fading channel model
is considered here with Rayleigh fading, i.e. the fading coefficients
hij remain constant during one timeslot, but change independently
from one timeslot to another based on a circularly symmetric complex
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Fig. 1: Two-user interference channel with bursty arrivals.

Gaussian distribution with zero mean and unit variance. The noise
is assumed to be additive white Gaussian with zero mean and unit
variance. With pi we denote the transmission power of source Si, and
rij is the distance between transmitter Si and receiver Dj with a being
the path loss exponent.

Let DTi denote the event that destination i is able to decode the
packet transmitted from the i-th source given a set of active transmitters
denoted by T i.e. D{1,2}1 denotes the event that the first destination can
decode the information from the first source when both transmitters are
active (T = {1, 2}). When only Si is active the event D{i}i is defined
as

D{i}i ,
{
Ri ≤ log2

(
1 + |hii|2r−aii pi

)}
. (1)

For convenience we define SNRi , |hii|2r−aii pi and γi , 2Ri − 1.
The probability that the link ii is not in outage when only Si is active
is given by [9]

Pr
(
D{i}i

)
= Pr {SNRi ≥ γi} = exp

(
−γir

a
ii

pi

)
. (2)

The events D{i,j}i (both sources are active) are defined based on the
specific interference treatment on each receiver.

We adopt the definition of queue stability used in [10].

Definition 1. Denote by Qti the length of queue i at the beginning of
time slot t. The queue is said to be stable if

lim
t→∞

Pr[Qti < x] = F (x) and lim
x→∞

F (x) = 1. (3)

If limx→∞ limt→∞ inf Pr[Qti < x] = 1, the queue is substable. If
a queue is stable, then it is also substable. If a queue is not substable,
then we say it is unstable.

Loynes’ theorem [11] states that if the arrival and service processes
of a queue are strictly jointly stationary and the average arrival rate is
less than the average service rate, then the queue is stable. The stability
region of the system is defined as the set of arrival rate vectors (λ1, λ2)
for which the queues in the system are stable.

III. MAIN RESULTS

The stability region in a parametric form without considering any
specific technique for treating the interference at the receivers for the
two-user interference channel is given by R = R1

⋃
R2 where R1

and R2 are given by (4) and (5) respectively.
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R1 =

(λ1, λ2) :
λ1

Pr
(
D{1}1

) +

[
Pr
(
D{1}1

)
− Pr

(
D{1,2}1

)]
λ2

Pr
(
D{1}1

)
Pr
(
D{1,2}2

) < 1, λ2 < Pr
(
D{1,2}2

) (4)

R2 =

(λ1, λ2) :
λ2

Pr
(
D{2}2

) +

[
Pr
(
D{2}2

)
− Pr

(
D{1,2}2

)]
λ1

Pr
(
D{2}2

)
Pr
(
D{1,2}1

) < 1, λ1 < Pr
(
D{1,2}1

) (5)

RIAN
1 =

(λ1, λ2) :
λ1

exp
(
− γ1r

a
11

p1

) +
γ1
p2
p1

(
r11
r21

)a
+ γ1γ2

(
r11r22
r12r21

)a
exp

(
− γ2r

a
22

p2

) λ2 < 1, λ2 <
exp

(
− γ2r

a
22

p2

)
[
1 + γ2

p1
p2

(
r22
r12

)a]
 (6)

RIAN
2 =

(λ1, λ2) :
λ2

exp
(
− γ2r

a
22

p2

) +
γ2
p1
p2

(
r22
r12

)a
+ γ1γ2

(
r22r11
r12r21

)a
exp

(
− γ1r

a
11

p1

) λ1 < 1, λ1 <
exp

(
− γ1r

a
11

p1

)
[
1 + γ1

p2
p1

(
r11
r21

)a]
 (7)

RSIC
1 =

{
(λ1, λ2) :

λ1

Pr {SNR1 ≥ γ1}
+

1− Pr {{SINR21 ≥ γ2} | {SNR1 ≥ γ1}}
Pr {{SINR12 ≥ γ1} ∩ {SNR2 ≥ γ2}}

λ2 < 1, λ2 < Pr {{SINR12 ≥ γ1} ∩ {SNR2 ≥ γ2}}
}

(8)

RSIC
2 =

{
(λ1, λ2) :

λ2

Pr {SNR2 ≥ γ2}
+

1− Pr {{SINR12 ≥ γ1} | {SNR2 ≥ γ2}}
Pr {{SINR21 ≥ γ2} ∩ {SNR1 ≥ γ1}}

λ1 < 1, λ1 < Pr {{SINR21 ≥ γ2} ∩ {SNR1 ≥ γ1}}
}

(9)
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Fig. 2: The stability region for the general case.

It is easy to see that if

Pr
(
D{1,2}1

)
Pr
(
D{1}1

) +
Pr
(
D{1,2}2

)
Pr
(
D{2}2

) ≷ 1, (10)

then the stability region is concave/convex and is depicted in Fig. 2.
The stability region when both destinations decode their individual

messages by treating the interference from unintended sources as noise
is RIAN = RIAN

1 ∪RIAN
2 . RIAN

1 and RIAN
2 are given by (6) and (7)

respectively. RIAN is convex/concave when:

γ1γ2 ≶

(
r12r21
r22r11

)a
. (11)

When both receivers employ successive interference cancelation
when both transmitters are active, the stability region is RSIC =
RSIC

1 ∪ RSIC
2 , where RSIC

1 and RSIC
1 are given by (8) and (9)

respectively. The RSIC is concave/convex if

Pr {{SINR21 ≥ γ2} | {SNR1 ≥ γ1 }}+
Pr {{SINR12 ≥ γ1} | {SNR2 ≥ γ2 }} ≷ 1.

The complete proofs for the previous results are given in [1]. Also
in [1] are presented the conditions for which a certain interference

management technique leads to broader stability region compared to
the others.

IV. CONCLUSIONS

We derived the stability region of the two-user interference channel
for the general case and for different interference management strate-
gies, namely treating interference as noise and successive interference
cancelation at the receivers. Furthermore, we provided conditions for
the convexity/concavity of the stability regions.
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