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Abstract—We address the Optimal Power Flow (OPF) problem,
which is NP hard in general. The OPF problem plays a key role
in efficient control of electrical networks. Solving the problem not
only in transmission networks, but also in distribution networks is
challenging because of the constant growth of the smart grid. As a
result, related algorithms must possess rich scalability properties
to keep up with the network growth. To address these issues,
we develop a distributed algorithm for the OPF problem by
decomposing the problem among the buses of the network. The
proposed algorithm is based on alternating direction method
of multipliers and sequential approximation techniques. The
original problem is equivalently split into small local subproblems
(one for each bus), which are coordinated via thin communication
protocol, enriching the algorithm with scalability properties.

Index Terms— Optimal power flow, distributed optimization,
smart grid, interactive power networks.

I. INTRODUCTION

The optimal power flow (OPF) problem in electrical net-
works determines, the amount of power to generated at each
generation point and how to dispatch the power. A global
network-wide objective criterion is optimized, while ensuring
that the power demand of each consumer is met and that the
related laws of physics are not violated.

The problem was originally presented by Carpentier in the
sixties [1], and has been extensively studied since then. It
become of great importance in efficient operation of power
systems [2]. The problem is shown to be NP-hard, see [3],
and therefore practical and general purpose algorithms must
rely on some approximations or heuristics.

In this paper, we first present a distributed algorithm for the
general OPF problem. We do not rely on SDP relaxation, and
therefore our approach is not restricted to any special classes
of networks. We capitalize on alternating direction method
of multipliers (ADMM) [4] to design a distributed algorithm
among electrical network buses. The original problem is split
into subproblems (one for every bus), which are coordinated
via a light protocol to compute a desirable feasible point. In
the case of optimization subproblems at electrical network
buses, we capitalize on sequential approximations, in order
to gracefully manage the nonconvexity issues.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an electrical network with N buses where N =
{1, 2, . . . , N} is the set of buses and L (⊆ N × N ) is the
set of flow lines. We denote by ik = iRe

k + jiIm
k the current

injection and by vk = vRe
k +jvIm

k the voltage at bus k ∈ N . Let
pD
k + jqD

k ∈ C and pG
k + jqG

k ∈ C denote the complex power
demand and the complex power generated by bus k ∈ N ,

respectively. Thus, the complex power pk + jqk ∈ C injected
to bus k is given by pk + jqk = (pG

k + jqG
k)− (pD

k + jqD
k).

For clarity, we let pG, qG, pD, qD, p, q, i, iRe, iIm, v,
vRe, and vIm denote the vectors (pG

k)k∈N , (qG
k)k∈N , (pD

k)k∈N ,
(qD

k)k∈N , (pk)k∈N , (qk)k∈N , (ik)k∈N , (iRe
k )k∈N , (iIm

k )k∈N ,
(vk)k∈N , (vRe

k )k∈N , and (vIm
k )k∈N , respectively. We denote by

iRe
nm + jiIm

nm ∈C the complex current and by pnm + jqnm ∈C
the complex power transferred from bus n to the rest of the
network through the flow line (n,m) ∈ L. The admittance
matrix Y ∈CN×N of the network is given by

Y =


ynn +

∑
(n,l)∈L ynl, if n = m,

−ynm, if (n,m) ∈ L ,

0, otherwise,
(1)

where ynm = gnm + jbnm ∈ C is the admittance in the flow
line (n,m) ∈ L, and ynn = gnn + jbnn ∈C is the admittance
to ground at bus n. We let G ∈ IRN×N and B ∈ IRN×N

denote the real and imaginary parts of Y, respectively, i.e.,
[G]nm = gnm and [B]nm = bnm yielding Y = G + jB.
Finally, we let cnm = (gnm,−gnm, bnm,−bnm) and dnm =
(bnm,−bnm,−gnm, gnm) for notational simplicity.

A. Centralized formulation

We denote by fG
k the cost of generating power at bus k ∈ G,

where G ⊆ N denotes the set of generator buses. We can now
express formally the OPF problem as
minimize

∑
k∈G

fG
k(pG

k) (2a)

subject to iRe+jiIm=GvRe−BvIm+j (BvRe+GvIm) , (2b)
pk+jqk = pG

k−pD
k+j (qG

k−qD
k) , k ∈ N , (2c)

iRe
nm+jiIm

nm=
(
cT
nm+jdT

nm

)
(vRe

n , v
Re
m, vIm

n , v
Im
m),

(n,m) ∈ L, (2d)
p+jq=vRe•iRe+vIm•iIm+j (vIm•iRe−vRe•iIm) ,

(2e)
pnm+jqnm=vRe

n i
Re
nm+vIm

n i
Im
nm+j (vIm

n i
Re
nm−vRe

n i
Im
nm) ,

(n,m) ∈ L, (2f)
pG,min
k ≤p

G
k≤pG,max

k , k ∈ N , (2g)
qG,min
k ≤qG

k≤qG,max
k , k ∈ N , (2h)

(iRe
nm)2+(iIm

nm)2≤(imax
nm)2, (n,m) ∈ L, (2i)

p2nm+q2nm≤(smax
nm)2, (n,m) ∈ L, (2j)

|pnm|≤pmax
nm, (n,m) ∈ L, (2k)

(vmin
k )2≤(vRe

k )2+(vIm
k )2≤(vmax

k )2, k ∈ N , (2l)

where the variables are pG, qG, p, q, iRe, iIm, vRe, vIm, and iRe
nm,

iIm
nm, pnm, qnm for (n,m) ∈ L.
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initialization:

n = 0, y(0)
k , v(0)

(1)

primal variable xk = (xRe
k ,xIm

k )-update, k ∈ N

to compute x
(n+1)
k

(2)

net variable v = (vRe,vIm)-update

to compute v(n+1)
(3)

dual variable yk-update, k ∈ N

to compute y
(n+1)
k

(4)

n := n + 1

Fig. 1: Algorithm 1

B. General Consensus Form

By carefully identifying the coupling variables of prob-
lem (2), we can equivalently formulate the problem in the form
of a general consensus problem [4, § 7.2], where fully decen-
tralized implementation can be realized. To briefly formalize
the idea above, we first denote by Nk the set of bus k itself and
its neighboring buses, i.e. Nk = {k}∪{n|(k, n) ∈ L}. Copies
of real and imaginary parts of the voltages corresponding to
buses in Nk is denoted by xRe

k ∈ IR|Nk| and xIm
k ∈ IR|Nk|,

respectively. For notational convenience, we let (xRe
k )1 = vRe

k

and (xRe
k )1 = vIm

k . We refer to vRe and vIm as real and imaginary
net variables, respectively. Note that the copies of net variable
vRe
k and vIm

k are shared among |Nk| entities, which we call the
degree of net variable vRe

k or vIm
k . The coupling of variables is

imposed by
xRe
k = Ekv

Re, xIm
k = Ekv

Im, where (3)

(Ek)nm=

{
1 if (xRe

k )n is a local copy of vRe
m

0 otherwise.
(4)

By using (3) and the local variables zk =
(pG

k, q
G
k, pk, qk, i

Re
k , i

Im
k ,x

Re
k ,x

Im
k , ī

Re
k , ī

Im
k , p̄k, q̄k) associated

with every bus k, the equivalent general consensus problem
for OPF (GC-OPF) is obtained. We denote by yk the dual
variables associated with constraints (3) of the resulting
GC-OPF problem. Standard ADMM techniques can then be
readily applied to GC-OPF problem [4, § 7.2], see Figure 1.

Note that step 3 and 4 of the algorithm can be solved in a
straightforward manner. In contrast, step 2 is the most chal-
lenging iteration, where the associated subproblems (one for
each bus) are NP-hard. However, for efficient implementation
of the algorithm, polynomial-time algorithms are desirable,
even with a loss in the optimality. Therefore, we capitalize on
sequential convex approximations to design a good heuristic.
Our approach is inspired from the approximations used in [5],
in the context of centralized OPF. The key idea is to use
first order Taylor’s approximations in an iterative manner to
convexify the nonconvex constraints of GC-OPF problem.
Figure 2 shows a block diagram of the proposed algorithm.

initialization:

current guess ẑ
(0)
k , m = 0

(1)

Bus k approximates the subproblem

at ẑ(m)
k , denoted by GC-OPFk

(2)

Bus k solves GC-OPFk

to yield z?
k

(3)

update next approximation point

ẑ
(m+1)
k = z?

k

(4)

m := m + 1

Fig. 2: Algorithm 2

III. PROPERTIES OF THE DISTRIBUTED SOLUTION METHOD

Because the original problem (2) is nonconvex and is NP-
hard, optimality and convergence guarantees of non-global
methods are usually difficult to achieve if not impossible.
Nevertheless, we investigate some of the optimality properties
of our proposed Algorithm 1 and Algorithm 2. Roughly speak-
ing, we show that the results of Algorithm 2 satisfy Karush-
Kuhn-Tucker (KKT) conditions for the original problem to be
solved at step 2 of Algorithm 1. This results is later used to
characterize the solutions of Algorithm 1. These properties of
the proposed algorithms are numerically substantiated. Details
are skipped due to page limitations.

IV. CONCLUSIONS

We proposed a distributed algorithm for the optimal power
flow problem by decomposing it among the buses. Only a thin
communication protocol among neighboring buses is required
during the algorithm, resulting in rich scalability properties.
The proposed algorithms were based on alternating direction
method of multipliers and sequential convex approximations
techniques. The optimality properties of the proposed algo-
rithms were investigated, under mild conditions and were
numerically substantiated.
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